
YAML Encoding Keys
Language-Independent Type for

YAML™ Version 1.1
Working Draft 2005-01-18

Oren Ben-Kiki <oren@ben-kiki.org>
Clark Evans <cce+yaml@clarkevans.com>

Brian Ingerson <ingy@ttul.org>
Copyright © 2001-2005 Oren Ben-Kiki, Clark Evans, Brian Ingerson

This document may be freely copied provided it is not modified.

Status

This specification is a draft reflecting consensus reached by members of the yaml-core mailing
list [http://lists.sourceforge.net/lists/listinfo/yaml-core]. Any questions regarding this draft should
be raised on this list.

URI: tag:yaml.org,2002:yaml

Shorthand: !!yaml

Kind: Scalar.

Canonical: N/A (single format).

Regexp: !|&|*

Definition: Keys for encoding YAML in YAML.

YAML encoding keys are used to denote YAML structure information. The in-memory repres-
entation of these keys must be different from any value in any other type family. Specifically,
these in-memory values must not be implemented as strings. Normally, the encoding keys
should not be used in serialized YAML documents; the encoded YAML node is serialized in-
stead.

Encoding is useful when a YAML processor encounters a valid YAML value of an unknown
tag. For a schema-specific application, this is not different from encountering any other valid
YAML document that does not satisfy the schema. Such an application may safely use a pro-
cessor that rejects any value of any unknown tag, or discards the tag property with an appropriate
warning and parses the value as if the property was not present.

For a schema-independent application (for example, a hypothetical YAML pretty print applic-
ation), this is not an option. Processors used by such applications should encode the value in-
stead. This may be done by wrapping the value in a mapping containing encoding keys. The
“!” key denotes the unsupported tag. In some cases it may be necessary to encode anchors and
alias nodes as well. The “&” and “*” keys are used for this purpose.

Encoding should be reversed on output, allowing the schema-independent application to safely
round-trip any valid YAML document. In-memory, the encoded data may be accessed and

1

XSL•FO
RenderX

http://lists.sourceforge.net/lists/listinfo/yaml-core
http://lists.sourceforge.net/lists/listinfo/yaml-core
http://www.w3.org/Style/XSL
http://www.renderx.com/

manipulated in a standard way using the three basic data types (mapping, sequence and scalar),
allowing limited processing to be applied to arbitrary YAML data.

Example 1. !!yaml Examples

The following node should NOT be serialized this way.
encoded YAML node :
 !!yaml '!' : '!type'
 !!yaml '&' : 12
 !!value = : value
The proper way to serialize the above node is as follows:
node : !type &12 value

2

YAML Encoding Keys Language-Inde-
pendent Type for YAML™ Version 1.1

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

	YAML Encoding Keys Language-Independent Type for YAML™ Version 1.1
	1.

